查看原文
其他

分布式&并行&集群学术速递[1.10]

格林先生MrGreen arXiv每日学术速递 2022-05-05

Update!H5支持摘要折叠,体验更佳!点击阅读原文访问arxivdaily.com,涵盖CS|物理|数学|经济|统计|金融|生物|电气领域,更有搜索、收藏等功能!


cs.DC分布式&并行&集群,共计3篇


【1】 Multi-Model Federated Learning
标题:多模型联合学习
链接:https://arxiv.org/abs/2201.02582

作者:Neelkamal Bhuyan,Sharayu Moharir
摘要:Federated learning is a form of distributed learning with the key challenge being the non-identically distributed nature of the data in the participating clients. In this paper, we extend federated learning to the setting where multiple unrelated models are trained simultaneously. Specifically, every client is able to train any one of M models at a time and the server maintains a model for each of the M models which is typically a suitably averaged version of the model computed by the clients. We propose multiple policies for assigning learning tasks to clients over time. In the first policy, we extend the widely studied FedAvg to multi-model learning by allotting models to clients in an i.i.d. stochastic manner. In addition, we propose two new policies for client selection in a multi-model federated setting which make decisions based on current local losses for each client-model pair. We compare the performance of the policies on tasks involving synthetic and real-world data and characterize the performance of the proposed policies. The key take-away from our work is that the proposed multi-model policies perform better or at least as good as single model training using FedAvg.

【2】 In Situ Data Summaries for Flexible Feature Analysis in Large-Scale Multiphase Flow Simulations
标题:大尺度多相流模拟中柔性特征分析的现场数据汇总
链接:https://arxiv.org/abs/2201.02557

作者:Soumya Dutta,Terece Turton,David Rogers,Jordan Musser,James Ahrens,Ann Almgren
摘要:The study of multiphase flow is essential for understanding the complex interactions of various materials. In particular, when designing chemical reactors such as fluidized bed reactors (FBR), a detailed understanding of the hydrodynamics is critical for optimizing reactor performance and stability. An FBR allows experts to conduct different types of chemical reactions involving multiphase materials, especially interaction between gas and solids. During such complex chemical processes, formation of void regions in the reactor, generally termed as bubbles, is an important phenomenon. Study of these bubbles has a deep implication in predicting the reactor's overall efficiency. But physical experiments needed to understand bubble dynamics are costly and non-trivial. Therefore, to study such chemical processes and bubble dynamics, a state-of-the-art massively parallel computational fluid dynamics discrete element model (CFD-DEM), MFIX-Exa is being developed for simulating multiphase flows. Despite the proven accuracy of MFIX-Exa in modeling bubbling phenomena, the very-large size of the output data prohibits the use of traditional post hoc analysis capabilities in both storage and I/O time. To address these issues and allow the application scientists to explore the bubble dynamics in an efficient and timely manner, we have developed an end-to-end visual analytics pipeline that enables in situ detection of bubbles using statistical techniques, followed by a flexible and interactive visual exploration of bubble dynamics in the post hoc analysis phase. Positive feedback from the experts has indicated the efficacy of the proposed approach for exploring bubble dynamics in very-large scale multiphase flow simulations.

【3】 A SIMD algorithm for the detection of epistatic interactions of any order
标题:检测任意阶上位性相互作用的SIMD算法
链接:https://arxiv.org/abs/2201.02460

作者:Christian Ponte-Fernández,Jorge González-Domínguez,María J. Martín
备注:Submitted to Future Generation Computer Systems. Codes used are available at this https URL
摘要:Epistasis is a phenomenon in which a phenotype outcome is determined by the interaction of genetic variation at two or more loci and it cannot be attributed to the additive combination of effects corresponding to the individual loci. Although it has been more than 100 years since William Bateson introduced this concept, it still is a topic under active research. Locating epistatic interactions is a computationally expensive challenge that involves analyzing an exponentially growing number of combinations. Authors in this field have resorted to a multitude of hardware architectures in order to speed up the search, but little to no attention has been paid to the vector instructions that current CPUs include in their instruction sets. This work extends an existing third-order exhaustive algorithm to support the search of epistasis interactions of any order and discusses multiple SIMD implementations of the different functions that compose the search using Intel AVX Intrinsics. Results using the GCC and the Intel compiler show that the 512-bit explicit vector implementation proposed here performs the best out of all of the other implementations evaluated. The proposed 512-bit vectorization accelerates the original implementation of the algorithm by an average factor of 7 and 12, for GCC and the Intel Compiler, respectively, in the scenarios tested.

机器翻译,仅供参考

点击“阅读原文”获取带摘要的学术速递

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存